Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 16(2): 404-413, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33543920

RESUMO

Identification of physiologically relevant targets for lead compounds emerging from drug discovery screens is often the rate-limiting step toward understanding their mechanism of action and potential for undesired off-target effects. To this end, we developed a streamlined chemical proteomic approach utilizing a single, photoreactive cleavable chloroalkane capture tag, which upon attachment to bioactive compounds facilitates selective isolation of their respective cellular targets for subsequent identification by mass spectrometry. When properly positioned, the tag does not significantly affect compound potency and membrane permeability, allowing for binding interactions with the tethered compound (probe) to be established within intact cells under physiological conditions. Subsequent UV-induced covalent photo-cross-linking "freezes" the interactions between the probe and its cellular targets and prevents their dissociation upon cell lysis. Targets cross-linked to the capture tag are then efficiently enriched through covalent capture onto HaloTag coated beads and subsequent selective chemical release from the solid support. The tag's built-in capability for selective enrichment eliminates the need for ligation of a capture tag, thereby simplifying the workflow and reducing variability introduced through additional operational steps. At the same time, the capacity for adequate cross-linking without structural optimization permits modular assembly of photoreactive chloroalkane probes, which reduces the burden of customized chemistry. Using three model compounds, we demonstrate the capability of this approach to identify known and novel cellular targets, including those with low affinity and/or low abundance as well as membrane targets with several transmembrane domains.


Assuntos
Marcadores de Afinidade/química , Azidas/química , Reagentes de Ligações Cruzadas/química , Diazometano/análogos & derivados , Hidrocarbonetos Clorados/química , Proteômica/métodos , Marcadores de Afinidade/efeitos da radiação , Azidas/efeitos da radiação , Cromatografia Líquida , Reagentes de Ligações Cruzadas/efeitos da radiação , Dasatinibe/análogos & derivados , Dasatinibe/farmacologia , Dasatinibe/efeitos da radiação , Diazometano/efeitos da radiação , Histona Desacetilases/análise , Histona Desacetilases/química , Humanos , Hidrocarbonetos Clorados/efeitos da radiação , Hidrolases/química , Células K562 , Espectrometria de Massas , Propranolol/análogos & derivados , Propranolol/farmacologia , Propranolol/efeitos da radiação , Proteínas Quinases/análise , Proteínas Quinases/química , Receptores Adrenérgicos alfa 2/análise , Receptores Adrenérgicos alfa 2/química , Raios Ultravioleta , Vorinostat/análogos & derivados , Vorinostat/farmacologia , Vorinostat/efeitos da radiação
2.
Mol Cell Proteomics ; 19(12): 2139-2157, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020190

RESUMO

Trypsin is the protease of choice in bottom-up proteomics. However, its application can be limited by the amino acid composition of target proteins and the pH of the digestion solution. In this study we characterize ProAlanase, a protease from the fungus Aspergillus niger that cleaves primarily on the C-terminal side of proline and alanine residues. ProAlanase achieves high proteolytic activity and specificity when digestion is carried out at acidic pH (1.5) for relatively short (2 h) time periods. To elucidate the potential of ProAlanase in proteomics applications, we conducted a series of investigations comprising comparative multi-enzymatic profiling of a human cell line proteome, histone PTM analysis, ancient bone protein identification, phosphosite mapping and de novo sequencing of a proline-rich protein and disulfide bond mapping in mAb. The results demonstrate that ProAlanase is highly suitable for proteomics analysis of the arginine- and lysine-rich histones, enabling high sequence coverage of multiple histone family members. It also facilitates an efficient digestion of bone collagen thanks to the cleavage at the C terminus of hydroxyproline which is highly prevalent in collagen. This allows to identify complementary proteins in ProAlanase- and trypsin-digested ancient bone samples, as well as to increase sequence coverage of noncollagenous proteins. Moreover, digestion with ProAlanase improves protein sequence coverage and phosphosite localization for the proline-rich protein Notch3 intracellular domain (N3ICD). Furthermore, we achieve a nearly complete coverage of N3ICD protein by de novo sequencing using the combination of ProAlanase and tryptic peptides. Finally, we demonstrate that ProAlanase is efficient in disulfide bond mapping, showing high coverage of disulfide-containing regions in a nonreduced mAb.


Assuntos
Dissulfetos/metabolismo , Peptídeo Hidrolases/metabolismo , Proteômica , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Mamutes , Paleontologia , Peptídeo Hidrolases/química , Fosforilação , Proteoma/metabolismo
3.
Anal Chem ; 87(23): 11635-40, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26537636

RESUMO

We present a novel proteomic standard for assessing liquid chromatography-tandem mass spectrometry (LC-MS/MS) instrument performance, in terms of chromatographic reproducibility and dynamic range within a single LC-MS/MS injection. The peptide mixture standard consists of six peptides that were specifically synthesized to cover a wide range of hydrophobicities (grand average hydropathy (GRAVY) scores of -0.6 to 1.9). A combination of stable isotope labeled amino acids ((13)C and (15)N) were inserted to create five isotopologues. By combining these isotopologues at different ratios, they span four orders of magnitude within each distinct peptide sequence. Each peptide, from lightest to heaviest, increases in abundance by a factor of 10. We evaluate several metrics on our quadrupole orbitrap instrument using the 6 × 5 LC-MS/MS reference mixture spiked into a complex lysate background as a function of dynamic range, including mass measurement accuracy (MMA) and the linear range of quantitation of MS1 and parallel reaction monitoring experiments. Detection and linearity of the instrument routinely spanned three orders of magnitude across the gradient (500 fmol to 0.5 fmol on column) and no systematic trend was observed for MMA of targeted peptides as a function of abundance by analysis of variance analysis (p = 0.17). Detection and linearity of the fifth isotopologue (i.e., 0.05 fmol on column) was dependent on the peptide and instrument scan type (MS1 vs PRM). We foresee that this standard will serve as a powerful method to conduct both intra-instrument performance monitoring/evaluation, technology development, and inter-instrument comparisons.


Assuntos
Cromatografia Líquida/métodos , Indicadores e Reagentes/química , Peptídeos/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Aminoácidos/química , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/síntese química
4.
Anal Biochem ; 416(1): 39-44, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21640699

RESUMO

Detergents are commonly used in protein-chemistry protocols and may be necessary for protein extraction, solubilization, and denaturation; however, their presence interferes with many downstream analysis techniques, including mass spectrometry (MS). To enable downstream analysis, it is critical to remove unbound detergents from protein and peptide samples. In this study, we describe a high-performance resin that offers exceptional detergent removal for proteins and peptides. When used in a spin column format, this resin dramatically improves protein and peptide MS results by more than 95% removal of 1-5% detergents, including sodium dodecyl sulfate (SDS), sodium deoxycholate, Chaps, Triton X-100, Triton X-114, NP-40, Brij-35, octyl glucoside, octyl thioglucoside, and lauryl maltoside, with high recovery of proteins and peptides. Postcolumn liquid chromatography-tandem MS (LC-MS/MS) analysis of trypsin digests of bovine serum albumin (BSA) and HeLa cell lysate revealed excellent sequence coverage, indicating successful removal of detergent from the peptides. Matrix-assisted laser desorption/ionization (MALDI)-MS analysis of unprocessed and processed samples further confirmed efficient removal of detergents. The advantages of this method include speed (<15min), efficient detergent removal, and high recovery of proteins and peptides.


Assuntos
Fracionamento Químico/instrumentação , Detergentes/isolamento & purificação , Oligossacarídeos/química , Peptídeos/química , Proteínas/química , Resinas Sintéticas/química , Animais , Bovinos , Cromatografia Líquida , Células HeLa , Humanos , Espectrometria de Massas , Soroalbumina Bovina/química , Propriedades de Superfície , Tripsina/química
5.
J Biol Chem ; 283(16): 10330-8, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18256027

RESUMO

Surfactant protein B (SP-B) is essential to the function of pulmonary surfactant and to lamellar body genesis in alveolar epithelial type 2 cells. The bioactive, mature SP-B is derived from multistep post-translational proteolysis of a larger proprotein. The identity of the proteases involved in carboxyl-terminal cleavage of proSP-B remains uncertain. This cleavage event distinguishes SP-B production in type 2 cells from less complete processing in bronchiolar Clara cells. We previously identified pepsinogen C as an alveolar type 2 cell-specific protease that was developmentally regulated in the human fetal lung. We report that pepsinogen C cleaved recombinant proSP-B at Met(302) in addition to an amino-terminal cleavage at Ser(197). Using a well described model of type 2 cell differentiation, small interfering RNA knockdown of pepsinogen C inhibited production of mature SP-B, whereas overexpression of pepsinogen C increased SP-B production. Inhibition of SP-B production recapitulated the SP-B-deficient phenotype evident by aberrant lamellar body genesis. Together, these data support a primary role for pepsinogen C in SP-B proteolytic processing in alveolar type 2 cells.


Assuntos
Pulmão/embriologia , Pepsinogênio C/química , Proteína B Associada a Surfactante Pulmonar/química , Sequência de Aminoácidos , Brônquios/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/química
7.
Am J Physiol Renal Physiol ; 293(3): F868-76, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17596527

RESUMO

The A663T polymorphism of the alpha-subunit of the human epithelial sodium channel (hENaC) increases the functional and surface expression of alphabetagamma-hENaC in Xenopus laevis oocytes, and the context of this residue in the COOH terminus of alpha-hENaC is important for this effect. Query of a phosphoprotein database suggested that the alpha-T663 residue of hENaC might be a substrate for phosphorylation by casein kinase 1 (CK1). We tested the hypotheses that phosphorylation of alpha-T663-hENaC by CK1 would regulate the increased functional and surface expression of alpha-T663-hENaC vs. alpha-A663-hENaC in oocytes. General inhibition of CK1 with IC261 decreased the functional and surface expression of alpha-T663-hENaC, but not alpha-A663-hENaC. This decrease in alpha-T663-hENaC functional expression resulted from reduced delivery of alpha-T663-hENaC to the oocyte membrane. IC261 also inhibited the functional expression of alpha-T692-mENaC and a chimeric m(1-678)/h(650-669)alpha-T663, mbetagamma ENaC, but not alpha-A692-mENaC or m(1-678)/h(650-669)alpha-A663, mbetagamma ENaC. These data suggest that additional residues outside of the alpha-hENaC COOH terminus are important for modulation of alpha-T663-hENaC trafficking by CK1. Overexpression of CK1alpha did not alter functional expression of alpha-T663-hENaC. In contrast, modest overexpression of CK1delta enhanced, whereas higher levels of CK1delta overexpression inhibited alpha-T663-hENaC functional expression. CK1 did not phosphorylate the COOH terminus of either alpha-T663-hENaC or alpha-A663-hENaC in vitro. These data suggest that CK1, and perhaps specifically CK1delta, regulates the intracellular trafficking of the alpha-A663T functional polymorphism of hENaC indirectly by altering the rate of alpha-T663-hENaC biosynthesis and/or delivery to the plasma membrane.


Assuntos
Caseína Quinase I/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Polimorfismo Genético , Sequência de Aminoácidos , Animais , Caseína Quinase I/antagonistas & inibidores , Canais Epiteliais de Sódio/química , Humanos , Camundongos , Oócitos/metabolismo , Fosforilação , Isoformas de Proteínas , Transporte Proteico , Xenopus laevis
8.
Biochemistry ; 45(27): 8358-67, 2006 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-16819835

RESUMO

Our mutational studies on Hb S showed that the Hb S beta73His variant (beta6Val and beta73His) promoted polymerization, while Hb S beta73Leu (beta6Val and beta73Leu) inhibited polymerization. On the basis of these results, we speculated that EF-helix peptides containing beta73His interact with beta4Thr in Hb S and compete with Hb S, resulting in inhibition of Hb S polymerization. We, therefore, studied inhibitory effects of 15-, 11-, 7-, and 3-mer EF-helix peptides containing beta73His on Hb S polymerization. The delay time prior to Hb S polymerization increased only in the presence of the 15-mer His peptide; the higher the amount, the longer the delay time. DIC image analysis also showed that the fiber elongation rate for Hb S polymers decreased with increasing concentration of the 15-mer His peptide. In contrast, the same 15-mer peptide containing beta73Leu instead of His and peptides shorter than 11 amino acids containing beta73His including His alone showed little effect on the kinetics of polymerization and elongation of polymers. Analysis by protein-chip arrays showed that only the 15-mer beta73His peptide interacted with Hb S. CD spectra of the 15-mer beta73His peptide did not show a specific helical structure; however, computer docking analysis suggested a lower energy for interaction of Hb S with the 15-mer beta73His peptide compared to peptides containing other amino acids at this position. These results suggest that the 15-mer beta73His peptide interacts with Hb S via the beta4Thr in the betaS-globin chain in Hb S. This interaction may influence hydrogen bond interaction between beta73Asp and beta4Thr in Hb S polymers and interfere in hydrophobic interactions of beta6Val, leading to inhibition of Hb S polymerization.


Assuntos
Hemoglobina Falciforme/química , Histidina/química , Dicroísmo Circular , Hemoglobina Falciforme/genética , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia de Interferência , Peptídeos/química , Polímeros/química , Análise Serial de Proteínas , Estrutura Secundária de Proteína , Solubilidade
9.
J Am Chem Soc ; 127(16): 5804-5, 2005 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15839675

RESUMO

Metal-binding sites in metalloproteins frequently occur at the interfaces of elements of secondary structure, which has enabled the retrostructural analysis of natural proteins and the de novo design of helical bundles that bind metal ion cofactors. However, the design of metalloproteins containing beta-structure is less well developed, despite the frequent occurrence of beta-conformations in natural metalloproteins. Here, we describe the design and construction of a beta-protein, RM1, that forms a stable, redox-active 4-Cys thiolate Fe(II/III) site analogous to the active site of rubredoxin. The protein folds into a beta-structure in the presence and absence of metal ions and binds Fe(II/III) to form a redox-active site that is stable to repeated cycles of oxidation and reduction, even in an aerobic environment.


Assuntos
Fragmentos de Peptídeos/química , Rubredoxinas/química , Sítios de Ligação , Materiais Biomiméticos/química , Dicroísmo Circular , Cobalto/química , Cisteína/química , Compostos Férricos/química , Compostos Ferrosos/química , Modelos Moleculares , Oxirredução , Engenharia de Proteínas , Estrutura Secundária de Proteína , Pyrococcus furiosus/química , Espectrofotometria Ultravioleta , Triptofano/química , Zinco/química
10.
Proc Natl Acad Sci U S A ; 100(23): 13140-5, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14595023

RESUMO

The structural characterization of de novo designed metalloproteins together with determination of chemical reactivity can provide a detailed understanding of the relationship between protein structure and functional properties. Toward this goal, we have prepared a series of cyclic peptides that bind to water-soluble metalloporphyrins (FeIII and CoIII). Neutral and positively charged histidine-containing peptides bind with a high affinity, whereas anionic peptides bind only weakly to the negatively charged metalloporphyrin. Additionally, it was found that the peptide becomes helical only in the presence of the metalloporphyrin. CD experiments confirm that the metalloporphyrin binds specific cyclic peptides with high affinity and with isodichroic behavior. Thermal unfolding experiments show that the complex has "native-like" properties. Finally, NMR spectroscopy produced well dispersed spectra and experimental restraints that provide a high-resolution solution structure of the complexed peptide.


Assuntos
Heme/química , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Metaloporfirinas/química , Modelos Moleculares , Dados de Sequência Molecular , Porfirinas/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectrofotometria , Temperatura , Termodinâmica , Raios Ultravioleta
11.
J Am Chem Soc ; 124(42): 12394-5, 2002 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-12381164

RESUMO

We have synthesized and characterized a new class of heme-peptide complexes using disulfide-linked hairpin-turn and cyclic peptides and compared these to their linear analogues. The binding affinities, helicities, and mechanism of binding of linear, hairpin, and cyclic peptides to [FeIII(coproporphyrin-I)]+ have been determined. In a minimalist approach, we utilize amphiphilic peptide sequences (15-mers), where a central histidine provides heme ligation, and the hydrophobic effect is used to optimize heme-peptide complex stability. We have incorporated disulfide bridges between amphiphilic peptides to make hairpin and even cyclic peptides that bind heme extremely well, roughly 5 x 106 times more strongly than histidine itself. CD studies show that the cyclic peptide heme complexes are completely alpha-helical. NMR spectra of paramagnetic complexes of the peptides show that the 15-mer peptides bind sequentially, with an observable monopeptide, high-spin intermediate. In contrast, the cyclic peptide complexes ligate both imidazoles cooperatively to the heme, producing only a low-spin complex. Electrochemical measurements of the E1/2 of the FeIII(coproporphyrin-I)+ complexes of these peptides are all at fairly low potentials, ranging from -215 to -252 mV versus NHE at pH 7.


Assuntos
Heme/química , Peptídeos Cíclicos/química , Dissulfetos/química , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
12.
J Mol Biol ; 321(5): 923-38, 2002 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-12206771

RESUMO

Diiron proteins are found throughout nature and have a diverse range of functions; proteins in this class include methane monooxygenase, ribonucleotide reductase, Delta(9)-acyl carrier protein desaturase, rubrerythrin, hemerythrin, and the ferritins. Although each of these proteins has a very different overall fold, in every case the diiron active site is situated within a four-helix bundle. Additionally, nearly all of these proteins have a conserved Glu-Xxx-Xxx-His motif on two of the four helices with the Glu and His residues ligating the iron atoms. Intriguingly, subtle differences in the active site can result in a wide variety of functions. To probe the structural basis for this diversity, we designed an A(2)B(2) heterotetrameric four-helix bundle with an active site similar to those found in the naturally occurring diiron proteins. A novel computational approach was developed for the design, which considers the energy of not only the desired fold but also alternatively folded structures. Circular dichroism spectroscopy, analytical ultracentrifugation, and thermal unfolding studies indicate that the A and B peptides specifically associate to form an A(2)B(2) heterotetramer. Further, the protein binds Zn(II) and Co(II) in the expected manner and shows ferroxidase activity under single turnover conditions.


Assuntos
Biologia Computacional/métodos , Ferro/metabolismo , Metaloproteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Ceruloplasmina/metabolismo , Dicroísmo Circular , Cobalto/metabolismo , Metaloproteínas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Desnaturação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Subunidades Proteicas , Alinhamento de Sequência , Temperatura , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...